Sunday, April 27, 2008

Unlocking their origins - the new key to fighting diseases

Unlocking their origins -
the new key to fighting diseases

A mathematically derived algorithm is helping researchers to isolate the genetic causes of certain diseases by detecting the geographical origin of certain recurrent disease genes. The impact will be on identifying inherited genes which cause diseases in people of mixed races - what researchers refer to as population admixture.

A team of researchers from Washington University in St Louis and the Israeli Institute of Technology (Technion) in Haifa has developed this technique to detect the ancestry of disease genes in hybrid (mixed) human populations. Using the new algorithm, the technique, called EMI (expected mutual information), determines how a set of DNA markers is likely to discover the ancestral origin of locations on each chromosome.

For instance, it has been found that African Americans are much more likely than Europeans to die rapidly of end stage, progressive kidney failure. Because, due to ethnic mixing, many African Americans also have genes that originated in Europe, the technique will help to isolate the genetic causes of disease by finding from which continent the recurrent disease genes originated. It is hoped that through gene therapy or, perhaps drugs, the disease can be prevented or treated and, also, the technique and algorithm will be able to be applied to many other diseases.

So far the research has analysed DNA from 575 cases of African Americans with end-stage, progressive renal failure and compared them to controls, which did not have the disease, resulting in a panel of about 2,000 genetic markers. To find the origins of disease-causing genes, researchers routinely use a technique called MALD (mapping by admixture linkage disequilibrium), to identify regions of the genome which have genes associated a disease. This identifies differences in disease presence between populations to seek variation patterns which could be over-represented in groups with high susceptibility to a certain disease.

No comments: